Computationally efficient quantum-mechanical technique to calculate the direct tunneling gate current in metal-oxide-semiconductor structures
نویسندگان
چکیده
We propose a computationally efficient, accurate and numerically stable quantum-mechanical technique to calculate the direct tunneling ~DT! gate current in metal-oxide-semiconductor ~MOS! structures. Knowledge of the imaginary part G of the complex eigenenergy of the quasi-bound inversion layer states is required to estimate the lifetimes of these states. Exploiting the numerically obtained exponential dependence of G on the thickness of the gate-dielectric layer even in the sub-1-nm-thickness regime, we have simplified the determination of G in devices where it is too small to be calculated directly. It is also shown that the MOS electrostatics, calculated self-consistently with open boundary conditions, is independent of the dielectric layer thickness provided that the other parameters remain unchanged. Utilizing these findings, a computationally efficient and numerically stable method is developed for calculating the tunneling current–gate voltage characteristics. The validity of the proposed model is demonstrated by comparing simulation results with experimental data. Sample calculations for MOS transistors with high-K gate-dielectric materials are also presented. This model is particularly suitable for DT current calculation in devices with thicker gate dielectrics and in device or process characterization from the tunneling current measurement. © 2003 American Institute of Physics. @DOI: 10.1063/1.1589173#
منابع مشابه
Two-dimensional quantum mechanical modeling of nanotransistors
Quantization in the inversion layer and phase coherent transport are anticipated to have significant impact on device performance in ‘‘ballistic’’ nanoscale transistors. While the role of some quantum effects have been analyzed qualitatively using simple one-dimensional ballistic models, two-dimensional ~2D! quantum mechanical simulation is important for quantitative results. In this paper, we ...
متن کاملA compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor
Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...
متن کاملAnalytical approach to integrate the different components of direct tunneling current through ultrathin gate oxides in n-channel metal–oxide–semiconductor field-effect transistors
An analytical scheme to combine the channel component and the edge component of direct tunneling current through ultrathin gate oxides in n-channel metal–oxide–semiconductor field-effect transistors has been developed. The results obtained have been calibrated against the published experimental and numerical simulation data. The inherent simplicity of the proposed analytical model makes it suit...
متن کاملQuantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors
High-k dielectric materials are being considered as replacement for SiO2 as the gate dielectric while retaining the low equivalent oxide thickness (EOT) required next generation metal oxide semiconductor field effect transistors (MOSFETs). In this paper, we simulate the capacitance – voltage (C-V) of n-type MOSFET devices with different high-k dielectric insulator numerically. According to the ...
متن کاملTrap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics
This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling cur...
متن کامل